設置
上一章
下一章
返回
設置
前一段     暫停     繼續    停止    下一段

第357章 有想法了?

  想法已經確定,陳舟便不再猶豫。

  猶豫就是對時間最大的不負責!

  陳舟把錯題集合上,拿出新的草稿紙和筆。

  以及先前所寫的,那布滿公式和數學符號的草稿紙。

  看了一眼先前的研究內容,陳舟大致思索了一下。

  便提筆開始從分布解構法入手,對杰波夫猜想,也就是m2(m1)2之間的素數總個數進行研究。

  由分布解構法可知,處于m2(m1)2之間的素數總個數的分布規律,是忽高忽低的,但總體趨勢卻是越來越多。

  也就是說,素數的分布為隨機分布現象…

  習慣性的拿筆點了點草稿紙,然后陳舟拿筆把隨機分布現象圈了一下。

  這個現象的原因很簡單。

  在自然界中,只存在兩種現象,確定性現象為必然規律,隨機性現象為統計規律。

  而素數分布恰巧為隨機分布現象。

  它服從數理統計學中的大數定理中的平均值的穩定性。

  它在中心極限定理中的極限分布,正是正太分布。

  想到這,陳舟的嘴角不由得露出了一絲微笑。

  分布解構法的誕生,還是從最初的正太分布,得到的靈感。

  在數理統計學上,有這樣一個結論。

  如果一個指標,并非受到某一個因素的決定作用,而是受到大量的相互獨立的隨機因素的綜合影響所造成的。

  而且,其中每一個因素,在總的影響中,所起的作用都是微小的。

  那么,這個指標分布,就會呈正太分布。

  這個結論,陳舟在研究分布解構法的時候,就曾經證明過。

  陳舟所用的證明方法,也正是中心極限定理。

  陳舟現在的感覺,隱隱有些奇妙。

  卻又是那種可意會不可言傳的美感。

  仿佛克拉梅爾猜想和杰波夫猜想之間的微妙聯系,被他發現了。

  也仿佛,整個數論世界都若有若無的,體現著一種聯系。

  陳舟能夠感受到,卻無法準確的抓住。

  這種感覺,陳舟并不喜歡。

  就一位數學家而言,他更喜歡能夠準確用數學公式,或者數學符號,表述出來的東西。

  那種數學的美感,是能夠牢牢握在手中的。

  收回思緒,陳舟繼續在草稿紙上寫到:

  鑒于以上正太分布現象,由分布解構法可進行詳細分析和研究…

  由Pm2/3×4/5×6/7×10/11×12/13×16/17×18/19×…×2n/(2n1)>0,其中2n1為小于m1的最大奇素數,且這些奇素數是連續的奇素數,可以得到…

  當m較小(1≤m<17)時,其概率變化幅度大,即理論概率與實際概率幅度變化大,所以誤差小,精確度高…

  當m逐漸增大(m≥17)時,其概率變化幅度逐漸變小,即理論概率與實際概率變化幅度逐漸變得緩慢,造成理論值總比實際值大一定的比例,所以誤差大,精確度不高…

  不知不覺間,陳舟身旁的趙琦琦三人,已經依次上床睡覺了。

  睡覺前,趙琦琦還伸頭看了一眼。

  當看到陳舟面前,那密密麻麻,滿滿當當的草稿紙時。

  頓時只覺得一陣頭大,果然還是本科階段的課程,比較和藹可親。

  無論是復變函數,還是泛函分析,都比這玩意親切多了…

  朱明理和李禮也有著同樣的想法。

  但更多的,他們也在確定一件事。

  那就是,陳舟似乎要突破了!

  先前幾次,陳舟研究數學猜想時,不都是關鍵時刻才爆肝的嗎?

  本來他們三還奇怪呢,感覺算算時間,也差不多到了關鍵時刻。

  可就是沒見著陳舟爆肝研究杰波夫猜想。

  相反,他們還默默的看著陳舟潛心搞著物理課題,卻又不知道如何勸慰。

  當時,他們也懷疑過陳舟,是不是因為外界的輿論壓力,導致他放棄了和陶哲軒張億唐兩位大佬的比賽。

  但是現在,他們確信了。

  陳舟這小子肯定一直在憋大招,不到時間不放的那種。

  先前的物理課題什么的,都是障眼法。

  他肯定早就在腦中演算過無數遍關于杰波夫猜想的證明了。

  要不怎么可能,這物理課題一結束,杰波夫猜想的研究,就進入了爆肝階段?

  陳舟不知道宿舍三兄弟的想法,要是知道的話,估計又得哭笑不得。

  其實,他真沒這些人想的那么牛掰。

  但有一點,趙琦琦三人想的沒錯。

  關于杰波夫猜想的研究,陳舟確實有了新想法。

  在對杰波夫猜想的越過研究中,陳舟發現,當把整體思想、降值思想、平均值思想,這三大數學思想和分布解構法結合,去解決杰波夫猜想中的問題時。

  會有一個杰波夫常數R的出現。

  只需要將理論值乘以這個杰波夫常數R,就能夠把那些忽高忽低的素數總個數的平均值,求出來!

  這可以說是一個極大的突破了。

  這也是陳舟選擇爆肝研究的原因。

  面對杰波夫猜想的誘惑,陳舟覺得自己的精力,簡直不要太充沛了。

  分布函數Pn(x)有,limn→∞Pn(x)limn→∞P{(k1→n∑Xknμ)/o√n≤x}∫∞→x(1/√2π)e(t/2)dt…

  陳舟的筆跟隨著大腦的運轉,跟隨著流暢的思路,一刻未停。

  終于,凌晨三點左右。

  陳舟完成了這個大突破!

  這個杰波夫常數R,在經過大量數據計算之后,被他求得了!

  這里的r是根據分布解構法所得到的極限值,并且根據分布解構法進行了篩選…

  lim[r1r2r3…r(n1)rn]·1/n(n→∞)是一定存在的,其值便記作r…

  因此,杰波夫常數R0.89111352746…(n→∞)

  放下筆,陳舟伸了個懶腰。

  這玩意的計算量,真不是一般的大。

  而且,小數點后面的數字…

  陳舟瞥了眼杰波夫常數R,以及極限值r的求解過程,這兩個數值的小數點后面,都有數十位…

  但這其實不算什么,真正令陳舟感慨的。

  還是那滿滿的草稿紙。

  足足有7張!

  上面全是密密麻麻的公式和數學符號!

  幾乎看不見一點留白的地方!

  稍作歇息,陳舟把草稿紙整理了一下。

  然后翻開錯題集,驗證杰波夫常數R的正確性。

  如果這一步走對了,那分布解構法將的應用,將被完善。

  杰波夫猜想的研究,也將到達一個拐點!

  打開錯題集后,陳舟深呼吸了一口氣。

  才朝錯題集上,看去。

無線電子書    學霸從改變開始
上一章
書頁
下一章